

DNasel, RNase-free (500 u)

For Research Use Only

Cat. No.:MO5401 **Supplied with**: 1ml of 10X Reaction Buffer with MgCl ,1ml of 50mM EDTA

Description:

DNasel is an endonuclease that digests single- and doublestranded DNA. It hydrolyzes phosphodiester bonds producing Mono and oligodeoxyribo- nucleotides with 5'phosphate and 3'-OH groups. The enzyme activity is strictly dependent on Ca²⁺ and is activated byMg²⁺ orMn²⁺ ions:

- In the presence of Mg²⁺, DNasel cleaves each strand of ds DNA independently, in a statistically random fashion;
- In the presence of Mn²⁺, the enzyme cleaves both DNA strands at approximately the same site, producing DNA fragments with blunt ends or with one or two nucleotide overhangs.

Applications:

- Preparation of DNA-free RNA.
- Removal of template DNA following in vitro transcription, see protocol on reverse page.
- Preparation of DNA-free RNA prior to RT-PCR and RT-qPCR, see protocol on reverse page.
- DNA labeling by nick-translation in conjunction with DNA Polymerase I, see protocol on reverse page.
- Studies of DNA-protein interactions by DNasel, RNase-free footprinting.
- Generation of a library of randomly overlapping DNA inserts. Reaction buffer containing Mn²⁺ is used.

Source:

E.coli cells with a cloned gene encoding bovine DNasel.

Molecular Weight:

29 kDa Monomer.

Definition of Activity Unit:

One unit of the enzyme completely degrades 1 μg of plasmid DNA in 10min at 37°C.

Enzyme activity is assayed in the following

mixture: 10mM Tris-HCl (pH 7.5 at 25°C), 2.5mM MgCl , 0.1mM CaCl₂, 1 μ g of pUC19 DNA.

Concentration: 1u/µl Store at -20°C

One DNasel unit is equivalent to 0.3 Kunitz unit.

Storage Buffer

50mM Tris-HCl (pH 7.5), 10mM CaCl and 50% (v/v) glycerol.

10X Reaction Buffer with MgCl $_{\rm 2}$ 100mM Tris-HCl (pH 7.5 at 25°C), 25mM MgCl $_{\rm 2}$ 1mM CaCl₂.

Inhibition and Inactivation

- Inhibitors: Metal chelators, transition Metals (e.g., Zn) in Millimolar concentrations, SDS (even at concentrations less than 0.1%), reducing agents (DTT and 2-Mercaptoethanol), ionic strength above 50-100mM.
- Inactivated by heating at 65°C for 10Min in the presence of EGTA or EDTA (use at least 1mol of EGTA/EDTA per 1mol of Mn /Mg).

Note:

DNasel is sensitive to physical denaturation .Mix gently by inverting the tube. Do not vortex.

Removal of genomic DNA from RNA preparations

Add to an RNase-free tube:

RNA	1 μg
10X reaction buffer with MgCl ₂	1μΙ
DNasel, RNase-free	0.5μl (0.5u)
DEPC-treated Water	to 10μl

- 2. Incubate at 37°C for 30min.
- 3. Add 1µl 50mM EDTA and incubate at 65°C for 10min. RNA hydrolyzes during heating with divalent cations in the absence of a chelating agent. Alternatively, use phenol/chloroform extraction.

4. Use the prepared RNA as a template for reverse transcriptase.

Note:

- Do not use More than 1 u of DNasel, RNase-free per 1 μg of RNA.
- Volumes of the reaction Mixture and 50mM EDTA solution can be scaled up for larger amounts of RNA. The recommended final concentration of RNA is 0.1 µg/µl.
- RiboLockTMRNase Inhibitor, typically at 1 u/μl, can also be included in the reaction Mixture to prevent RNA degradation.

Removal of template DNA after in vitro transcription

- 1. Add 2u of DNasel, RNase-free per 1 μg of template DNA directly to a transcription reaction Mixture. In some cases, the amount of enzyme should be determined empirically.
- 2. Incubate at 37°C for 15Minutes.
- 3. Inactivate DNasel by phenol/chloroform extraction.

DNA labeling by nick-translation

- 1.Mix the following components:
- 2. Immediately incubate at 15°C for 15-60min.
- 3. Terminate the reaction by adding 1µl of 0.5M EDTA, pH $8.0\ .$

SinaClon BioScience www.sinaclon.com Tel: +98(0)21 4463 0050-51 +98(0)21 4466 5156 Customer Service: +98(0)21 4463 3016 +98(0)9023120059

Place your order: order@sinaclon.com

10X reaction buffer for DNA Polymerase I	2.5μΙ
Mixture of 3 dNTPs, 1mM each (without the labeled dNTP)	1.25µl
[32P]-dNTP, ~110 TBq/mmol (3000 Ci/mmol)	1.85-3.7MBq (50-100 μCi)
DNasel, RNase-free freshly diluted to 0.002 u/µl	0.5μΙ
DNA Polymerase I Template DNA	0.5-1.5μl (5- 15u) 0.25 μg
Water, nuclease-free	to 25μl

^{4.} Take an aliquot (1 μ I) to determine the efficiency of label incorporation. A specific activity of at least 10 8 cpm/ μ g DNA is expected.

Note:

 DNasel, RNase-free can be diluted with 1X reaction buffer for DNA Polymerase I: 50mM Tris-HCl (pH 7.5 at 25°C), 10mM MgCl₂ and 1mM DTT

Quality Control Assay Data

No degradation of RNA was observed after incubation of 5 units of DNasel with 160ng RNA for 4 hours at 37°C.